

Groundwater Recharge and Agriculture: Finding a Sustainable Balance

Arup Mondal*¹

¹Department of Soil and Water Engineering, Bidhan Chandra Krishi Viswavidyalaya, Nadia (W.B.)-741252

ARTICLE INFO

Key words:

Groundwater Recharge
Sustainable Agriculture
Drip Irrigation
Managed Aquifer Recharge
Artificial Recharge Structures

ABSTRACT

Groundwater plays a critical role in sustaining global agriculture, especially in arid and semi-arid regions. However, excessive reliance on groundwater for irrigation has led to rapid aquifer depletion, threatening food and water security. This article explores the dynamic relationship between agriculture and groundwater recharge, highlighting the potential of artificial recharge structures—like check dams, recharge ponds, and trenches—and sustainable irrigation methods such as drip systems. Using case studies from India, the U.S., and Africa, it showcases how integrated approaches like Managed Aquifer Recharge (MAR), policy reforms, and farmer innovations can balance extraction with replenishment. A roadmap is outlined for building resilience through technology, governance, and ecological awareness.

INTRODUCTION

Groundwater is an essential resource that underpins global agriculture, especially when there is little rainfall and surface water sources in semi-arid and arid regions are either unreliable or available only seasonally. In countries like India, the United States, and various parts of Africa, millions of farmers depend on groundwater as their primary source of irrigation, enabling them to grow crops and maintain food security for vast populations. This reliance, while vital for agricultural productivity, has led to widespread over-extraction, often exceeding the rate at which nature can replenish underground aquifers. As groundwater levels continue to decline, many regions are facing the threat of a severe and potentially irreversible water crisis. The urgency of this issue calls for sustainable management practices that ensure groundwater is used responsibly and replenished effectively. One of the most critical components of this strategy is groundwater recharge, which refers to the process of refilling aquifers either naturally through rainfall infiltration or artificially through human-made interventions. Natural recharge can be enhanced by protecting watersheds, reducing surface runoff, and allowing rainwater to percolate into the ground, while artificial recharge techniques include building check dams, recharge wells, percolation tanks, and using treated wastewater to restore aquifer levels. At the same time,

it is imperative to reduce groundwater extraction by improving agricultural efficiency. This can be accomplished by implementing water-efficient irrigation techniques, such as drip and sprinkler systems, and by choosing crops that are well-adapted to local climatic conditions and have lower water requirements, and using modern technologies such as soil moisture sensors, satellite monitoring, and data-driven irrigation scheduling to optimize water use. Integrating traditional knowledge of water conservation with modern scientific approaches also offers valuable insights into sustainable practices. Furthermore, strong policy support, public awareness campaigns, and community involvement are necessary to implement and maintain effective groundwater management systems. Incentives for water-efficient farming, regulations to control excessive withdrawal, and investments in infrastructure for recharge and storage can collectively contribute to a more balanced use of groundwater resources. Ultimately, securing the future of agriculture in water-stressed regions hinges on our ability to align food production with the natural limits of groundwater availability. By recognizing the critical link between agriculture and groundwater, and by taking proactive steps to restore and preserve this precious resource, we can ensure a more resilient and sustainable agricultural future for generations to come.

* Corresponding author.

E-mail address: arup.096@gmail.com (Arup Mondal).

Received 30 April 2025; Received in revised form 18 May 2025; Accepted 01 June 2025

Available online 06 June, 2025

This is an open access article under the terms of the <https://creativecommons.org/licenses/by/4.0/> License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2025 Chronicle of Biological Sciences.

The Role of Groundwater in Agriculture

Globally, agriculture accounts for about 70% of freshwater withdrawals—with much of it sourced from underground aquifers. In countries like India, where over 60% of irrigated farmland relies on tube wells, groundwater has driven the Green Revolution but at a high ecological cost.

Statistic: India alone extracts over 250 billion cubic meters of groundwater annually—more than the USA and China combined (World Bank, 2021).

Impact of Over-Extraction

Overuse leads to:

- Declining water tables (e.g., Punjab, Rajasthan, California's Central Valley)
- Land subsidence
- Increased pumping costs
- Drying up of shallow aquifers

Table 1: Annual groundwater table decline in key agricultural zones

Region	Average Water Table Decline (m/year)	Main Crop
Punjab, India	0.5 – 1.0	Paddy, Wheat
Central Valley, USA	0.3 – 0.6	Almonds, Corn
North China Plain	0.2 – 0.5	Wheat, Corn

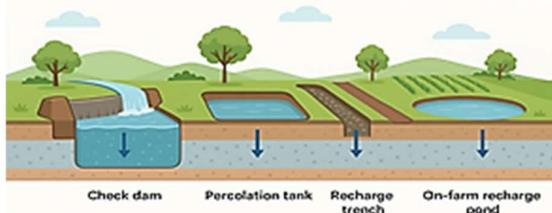
UNDERSTANDING GROUNDWATER RECHARGE

Natural Recharge

Groundwater recharge occurs when rainwater or surface water infiltrates into the ground through the soil. Natural recharge is influenced by:

- Rainfall quantity and intensity
- Soil permeability
- Vegetation cover
- Land use patterns

In India, only 10–20% of annual rainfall recharges groundwater naturally due to rapid surface runoff and soil sealing in urban areas (CGWB, 2023).


Artificial Recharge

To combat over-extraction, artificial recharge methods are used:

- Check dams
- Percolation tanks
- Recharge wells
- Contour bunds
- Recharge trenches in farms

These structures capture and store rainwater, allowing it to percolate slowly into the soil and aquifers.

Types of Artificial Recharge Structures

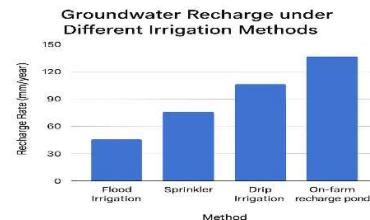


Figure 1: Types of artificial recharge structures

AGRICULTURE'S DOUBLE-EDGED ROLE

Agriculture as a Water Consumer

Traditional irrigation methods such as flood irrigation lead to enormous water losses through evaporation and runoff. Paddy fields, for instance, require standing water, which increases seepage and evaporation losses.

Figure 2: Comparison of groundwater recharge in fields using traditional vs. water-efficient irrigation

Agriculture as a Recharge Opportunity

Ironically, agriculture can also support recharge if managed well:

- On-farm recharge ponds can capture excess rainfall.
- Controlled irrigation (drip/sprinkler) reduces overuse and allows soil time to absorb water.
- Agroforestry enhances infiltration and reduces runoff.

INTEGRATED APPROACHES FOR SUSTAINABILITY

Managed Aquifer Recharge (MAR)

MAR integrates hydrology with engineering. It captures surface runoff during monsoons and directs it into aquifers.

- Example: Maharashtra's Jal Yukta Shivar Abhiyan added over 80 TMC (Thousand Million Cubic Feet) of water to groundwater in 3 years.

Policy Interventions

Governments play a key role through:

- Subsidies for micro-irrigation (e.g., PMKSY in India)
- Crop diversification policies
- Minimum support prices (MSP) aligned with water-efficiency
- Water budgeting tools at village/panchayat levels

Farmer-Level Innovations

- Zero tillage reduces runoff and improves infiltration.
- Cover cropping enhances soil structure and water retention.
- Crop rotation with less water-intensive species.

CASE STUDIES

India – From Paddy to Pulses

In Telangana, shifting from water-intensive rice to pulses and millets with drip irrigation reduced groundwater withdrawal by 40% over three years.

California – Almond Woes to Managed Recharge

Farmers in Central Valley, California adopted MAR techniques and rotated to winter crops during drought years, improving aquifer recharge.

Africa – Sand Dams in Kenya

Sand dams built on seasonal rivers in Kenya store water and slowly recharge the soil, enabling year-round cultivation even in arid regions.

A ROADMAP TO SUSTAINABLE BALANCE

Action	Impact on Recharge	Feasibility	Time Horizon
Drip Irrigation	Medium	High	Short-term
Recharge Ponds	High	Medium	Short-term
Policy-driven Crop Diversion	High	Medium	Medium-term
MAR Projects	Very High	Low-Medium	Long-term
Farmer Training Programs	Medium	High	Immediate

HOW TO CITE THIS ARTICLE

Mondal, A. (2025). Groundwater Recharge and Agriculture: Finding a Sustainable Balance. *Chronicle of Biological Sciences*, 1(1), 1-3

CONCLUSION

Agriculture and groundwater must coexist in harmony. While agriculture feeds billions, it must not drain the very aquifers that sustain it. Groundwater recharge, both natural and artificial, offers a way to rebuild this relationship. With science, community engagement, and smart policies, we can transition from extraction to restoration—and ensure that every drop counts.

REFERENCE

Central Ground Water Board (CGWB). (2023). Annual Report on Groundwater Resources in India.

World Bank. (2021). Deep Wells and Prudence: Towards Pragmatic Action for Addressing Groundwater Overexploitation in India.

FAO. (2020). AQUASTAT Global Water Statistics.

IWMI (International Water Management Institute). (2022). Water Scarcity and Agriculture: Navigating the Future.

California Department of Water Resources. (2021). Groundwater Sustainability Plan Reports.

Jal Shakti Ministry, Government of India. (2023). PMKSY Implementation Report.